ASSIGNMENT I (1/2024)

040283211 ENGINEERING MATHEMATICS III (ENGLISH PROGRAM)

Instruction :

1. Assignment III has <u>eight questions.</u> Do below exercises individually. Write all questions and detailed solutions with your own handwriting.

2. Due date on August 2nd, 2024 before 23.59 pm. Methods to submit based on agreement with lecturers of each section.

1). 1.1 Graph the cureve traced by the vector function $\vec{\mathbf{r}}(t) = \langle \sqrt{2}\sin t, \sqrt{2}\sin t, \sqrt{2}\cos t \rangle, 0 \le t \le 2\pi$.

- 1.2 Find the vector function that describes the curve *C* of intersection between the surfaces $x^2 + y^2 z^2 = 1$, y = 2x when x = t. Sketch the curve *C*.
- 1.3 Find $\vec{\mathbf{r}}'(t)$ and $\vec{\mathbf{r}}''(t)$ for the vector function $\vec{\mathbf{r}}(t) = t^2 \hat{\mathbf{i}} + t^3 \hat{\mathbf{j}} + \tan^{-1} t \hat{\mathbf{k}}$.
- 1.4 Evaluate the integral $\int \left(te^t \, \hat{\mathbf{i}} e^{-2t} \, \hat{\mathbf{j}} + te^{t^2} \, \hat{\mathbf{k}} \right) dt$.

...

- 1.5 Find the length of the curve traced by $\vec{\mathbf{r}}(t) = e^t \cos(2t) \hat{\mathbf{i}} + e^t \sin(2t) \hat{\mathbf{j}} + e^t \hat{\mathbf{k}}, \ 0 \le t \le 3\pi$.
- 2). 2.1 Suppose that $\vec{\mathbf{r}}(t) = \langle t^2, t^3 2t, t^2 5t \rangle$ is the position vector of a moving particle. At what points does the particle pass through the xy-plane? What are its velocity and acceleration at these points?
 - 2.2 The motion of a particle in space is described by $\vec{\mathbf{r}}(t) = a\cos t \,\hat{\mathbf{i}} + a\sin t \,\hat{\mathbf{j}} + bt \,\hat{\mathbf{k}}, t \ge 0$, where a, b are nonzero constants.

(a) Compute
$$\|\vec{\mathbf{v}}(t)\|$$
.
(b) Compute $s = \int_{0}^{t} \|\vec{\mathbf{v}}(t)\| dt$ and verify that $\frac{ds}{dt}$ is the same as the result of part (a).
(c) Verify that $\frac{d^{2}s}{dt^{2}} \neq \|\vec{\mathbf{a}}(t)\|$.

- 3). 3.1 Find the unit tangent vector $\hat{\mathbf{T}}(t)$, unit normal vector $\hat{\mathbf{N}}(t)$, unit binormal vector $\hat{\mathbf{B}}(t)$, and curvature κ for a general circular helix described by $\vec{\mathbf{r}}(t) = a\cos t \,\hat{\mathbf{i}} + a\sin t \,\hat{\mathbf{j}} + bt \,\hat{\mathbf{k}}$, where a, b are nonzero constants.
 - 3.2 Find the tangential and normal components of the acceleration at any t when the position vector is $\vec{\mathbf{r}}(t) = e^{-t}(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$.
 - 3.3 Find the curvature κ of an elliptical helix described by $\vec{\mathbf{r}}(t) = a\cos t \,\hat{\mathbf{i}} + b\sin t \,\hat{\mathbf{j}} + ct \,\hat{\mathbf{k}}$, where a, b, c are positive constants.

- 4). 4.1 Find the gradient of the function $F(x, y, z) = x^2 z^2 \sin(4y)$ at the point $(-2, \pi/3, 1)$.
 - 4.2 Find the directional derivative of the function $F(x, y, z) = x^2 y^2 (2z+1)^2$ at the point (1, -1, 1) in the direction (0,3,3).
 - 4.3 Find a vector that gives the direction in which the function $F(x, y, z) = \sqrt{xz}e^{y}$ decreases most rapidly at the point (16,0,9). Find the minimum rate.
 - 4.4 (a) If $f(x, y) = x^3 3x^2y^2 + y^3$, find the directional derivative of f at a point (x, y) in the direction of $\hat{\mathbf{u}} = (1/\sqrt{10})(3\hat{\mathbf{i}} + \hat{\mathbf{j}})$.

(b) If $F(x, y) = D_{\hat{u}}f(x, y)$ in part (a), find $D_{\hat{u}}F(x, y)$.

- 4.5 The temperature T at a point (x, y, z) in space is inversely proportional to the square of the distance from (x, y, z) to the origin. It is known that T(0,0,1) = 500. Find the rate of change of T at (2,3,3) in the direction of (3,1,1). In which direction from (2,3,3) does the temperature T increase most rapidly? At (2,3,3) what is the maximum rate of change of T?
- 5). 5.1 Given $\vec{\mathbf{F}}(x, y, z) = xye^x \hat{\mathbf{i}} x^3 yze^z \hat{\mathbf{j}} + xy^2 e^y \hat{\mathbf{k}}$. Find $\operatorname{curl} \vec{\mathbf{F}}$ and $\operatorname{div} \vec{\mathbf{F}}$.
 - 5.2 Given that $\vec{\mathbf{F}}$ has continuity of all partial derivatives. Verify that $\operatorname{div}(\operatorname{curl} \vec{\mathbf{F}}) = 0$.
 - 5.3 Find curl(curl $\vec{\mathbf{F}}$) for the vector field $\vec{\mathbf{F}} = xy\hat{\mathbf{i}} + 4yz^2\hat{\mathbf{j}} + 2xz\hat{\mathbf{k}}$.

6). 6.1 Let G(x, y, z) = 4xyz and the curve $C: x = \frac{t^3}{3}, y = t^2, z = 2t, 0 \le t \le 1$. Evaluate $\int_C G(x, y, z) ds$.

6.2 Evaluate $\int_{C} y dx + z dy + x dz$ where C is the curve from (0,0,0) to (6,8,5) as shown below.

6.3 Find the work done by the force $\vec{\mathbf{F}}(x, y, z) = yz\,\hat{\mathbf{i}} + xz\,\hat{\mathbf{j}} + xy\,\hat{\mathbf{k}}$ acting along the curve $\vec{\mathbf{r}}(t) = t^3\,\hat{\mathbf{i}} + t^2\,\hat{\mathbf{j}} + t\,\hat{\mathbf{k}}$ from t = 1 to t = 3.

7). 7.1 Show that $\int_{(1,1,\ln 3)}^{(2,2,\ln 3)} e^{2z} dx + 3y^2 dy + 2xe^{2z} dz$ is independent of the path and evaluate the integral.

7.2 Given the vector function $\vec{\mathbf{F}}(x, y, z) = (2 - e^z)\hat{\mathbf{i}} + (2y - 1)\hat{\mathbf{j}} + (2 - xe^z)\hat{\mathbf{k}}$ and the curve C is described by $\vec{\mathbf{r}}(t) = t\hat{\mathbf{i}} + t^2\hat{\mathbf{j}} + t^3\hat{\mathbf{k}}$ from (-1, 1, -1) to (2, 4, 8). Evaluate $\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$.

- 7.3 Given the force $\vec{\mathbf{F}}(x, y, z) = 8xy^3 z \,\hat{\mathbf{i}} + 12x^2 y^2 z \,\hat{\mathbf{j}} + 4x^2 y^3 \,\hat{\mathbf{k}}$.
 - (a) Show that \vec{F} is conservative.
 - (b) Find the work done by $\vec{\mathbf{F}}$ acting along the helix $\vec{\mathbf{r}}(t) = 2\cos t \,\hat{\mathbf{i}} + 2\sin t \,\hat{\mathbf{j}} + t \,\hat{\mathbf{k}}$ from (2,0,0) to $(1,\sqrt{3},\pi/3)$.
- 8). 8.1 Use Green's theorem to evaluate the line integral $\oint_C xy^2 dx + 3\cos y dy$, where *C* is the boundary of the region in the first quadrant determined by the graphs of $y = x^2$ and $y = x^3$.
 - 8.2 Let R be the region bounded by a piecewise-smooth simple closed curve C.

Prove that
$$\frac{1}{2} \oint_C -y \, dx + x \, dy = \text{ area of } R$$
.

8.3 Use Green's theorem to find work done by the force $\vec{\mathbf{F}} = (x - y)\hat{\mathbf{i}} + (x + y)\hat{\mathbf{j}}$ around the closed curve as shown below.

