ASSIGNMENT II (1/2024)

040283211 ENGINEERING MATHEMATICS III (ENGLISH PROGRAM)

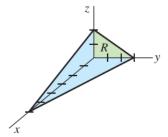
Instruction :

1. Assignment III has <u>five questions.</u> Do below exercises individually. Write all questions and detailed solutions with your own handwriting.

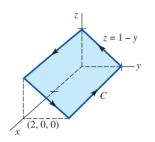
2. Due date on August **25th, 2024 before 23.59 pm.** Methods to submit based on agreement with lecturers of each section.

- 1). 1.1 Find the surface area of those portions of the sphere $x^2 + y^2 + z^2 = 2$ that are within the cone $z^2 = x^2 + y^2$.
 - 1.2 Evaluate the surface integral $\iint_{S} G(x, y, z) dS$, where G(x, y, z) = x + y + z and S is the surface of cone $z = \sqrt{x^2 + y^2}$ between z = 1 and z = 4.
 - cone $z = \sqrt{x^2 + y^2}$ between z = 1 and z = 4. 1.3 Evaluate $\iint_{S} (3z^2 + 4yz) dS$, where S is that portion of the plane x + 2y + 3z = 6 in the first octant.

Use the projection R of S onto the coordinate plane indicated in the figure below.



- 1.4 Let $\vec{\mathbf{F}} = e^y \hat{\mathbf{i}} + e^x \hat{\mathbf{j}} + 18y \hat{\mathbf{k}}$ and the oriented upward surface S is that portion of the plane x + y + z = 6 in the first octant. Find the flux of $\vec{\mathbf{F}}$ through the surface S.
- 2). 2.1 Assume that the surface S is oriented upward and that portions of the plane 2x + y + 2z = 6 in the first octant. Verify Stokes' theorem for the vector field $\vec{\mathbf{F}} = z\hat{\mathbf{i}} + x\hat{\mathbf{j}} + y\hat{\mathbf{k}}$.
 - 2.2 Let $\vec{\mathbf{F}} = z^2 y \cos(xy) \hat{\mathbf{i}} + z^2 x (1 + \cos(xy)) \hat{\mathbf{j}} + 2z \sin(xy) \hat{\mathbf{k}}$ and C is the boundary of the plane z = 1 y shown in the figure below. Use Stokes' theorem to evaluate $\oint \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$.



- 2.3 Use Stokes' theorem to evaluate $\iint_{S} (\operatorname{curl} \vec{\mathbf{F}}) \cdot \hat{\mathbf{n}} \, dS$, where $\vec{\mathbf{F}} = y \, \hat{\mathbf{i}} + (y x) \, \hat{\mathbf{j}} + z^2 \, \hat{\mathbf{k}}$ and S is oriented upward and that portion of the sphere $x^2 + y^2 + (z 4)^2 = 25$ for $z \ge 0$.
- 3). 3.1 Use the divergence theorem to find the outward flux $\oint_{S} (\vec{F} \cdot \hat{n}) dS$, where $\vec{F} = y^{3}\hat{i} + x^{3}\hat{j} + z^{3}\hat{k}$ and S is the surface of the region bounded within by $z = \sqrt{4 - x^{2} - y^{2}}$, $x^{2} + y^{2} = 3$ and z = 0. 3.2 The electric field at a point P(x, y, z) due to a point charge q located at the origin is given by the inverse square field $\vec{E} = q \frac{\vec{r}}{\|\vec{r}\|^{3}}$, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$. Suppose S is a closed surface, S_{a} is a sphere $x^{2} + y^{2} + z^{2} = a^{2}$ lying completely within S, and D is the region bounded between S and S_{a} as shown in the figure below. Show that the outward flux of \vec{E} for the region D is zero.
 - 3.3 Assume that the surface *S* forms the boundary of a closed and bounded region *D*. If $\vec{\mathbf{F}} = P\hat{\mathbf{i}} + Q\hat{\mathbf{j}} + R\hat{\mathbf{k}}$ and *P*,*Q*, and *R* have continuous second partial derivatives, show that $\bigoplus_{S} (\operatorname{curl} \vec{\mathbf{F}} \cdot \hat{\mathbf{n}}) dS = 0.$
- 4). 4.1 Let A be a ninzero 4×6 matrix.
 - (a) What is the maximum rank that A can have?
 - (b) If $rank(A|\vec{B}) = 2$, then for what value(s) of rank(A) is the system $A\vec{X} = \vec{B}, \vec{B} \neq \vec{0}$,

inconsistent? Consistent?

(c) If rank(A) = 3, then how many parameters does the solution of the system $A\vec{X} = \vec{0}$ have? 4.2 If the augmented matrix of a system of linear equations is

$$[\mathbf{A}|\vec{\mathbf{B}}] = \begin{bmatrix} 1 & 2 & | & 3 \\ 0 & c^2 - 9 & | & c + 3 \end{bmatrix}.$$

Find for what value(s) of c the system has

- (a) a unique solution.
- (b) infinitely many solutions.
- (c) no slution.

4.3 Let $\begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 2 & -2 & 3 & | & a \\ 3 & -1 & b & | & 2 \end{bmatrix}$ be the augmented matrix for a system of linear equations. Find for what

values of a and b the system has

(a) a unique solution.

(b) infinitely many solutions.

(c) no slution.

4.4 Use elementary row operations to determine the solution of the following linear system.

$$2x - y + 3z + 4w = 9$$

$$x - 2z + 7w = 11$$

$$3x - 3y + z + 5w = 8$$

$$2x + y + 4z + 4w = 10$$

5). Let $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$. Find the eigenvalues and corresponding eigenvectors of A.